¹³C NUCLEAR MAGNETIC RESONANCE SPECTRA OF GLUCOBIOSES

Naotaka Yamaoka, Taichi Usui, Kazuo Matsuda and Katura Tuzimura Faculty of Agriculture, Tohoku University, Tsutsumidori Amamiya-machi, Sendai, Japan.

Hiroshi Sugiyama and Shuichi Seto

Chemical Research Institute of Non-Aqueous Solution, Tohoku University, Katahiracho, Sendai, Japan.

(Received in Japan 24 April 1971; received in UK for publication 4 May 1971) WE report some preliminary studies of configuration of various glucobioses by ¹³C NMR. The utility of PMR spectroscopy for establishing of configuration of glucobioses (H-1) in solution has been deduced by the application of the Karplus relationship.¹⁾ However, the anomeric proton signals of glucobioses are heavily overlapped with other protons. Studies of the ¹³C NMR spectra of monosaccharides were published by other groups,^{2,3)} but the utility of ¹³C NMR for the assignment of the configuration of glycosidic linkage (C-1') in a disaccharide has not been published. Data on the C-1 resonance of a and β anomers in methyl D-glucopyranoside²⁾ could be used in the conjunction with relative peak heights to distinguish the constitution of the glycosidic linked carbon.

The C-1 resonance of the anomeric carbon of D-glucose was shifted downfield by methylation of the anomeric hydroxyl group.²⁾ The comparison of the C-1' resonance of α -linked glucobioses with α -D-glucopyranose showed that the linked carbon resonance was shifted downfield by 4.4~8.1 ppm by O-glucosylation of the α -hydroxyl group. Also, the comparison of the β -linked glucobioses with β -Dglucopyranose showed that the linked carbon resonance was shifted downfield by 7.0~8.5 ppm by O-glucosylation of the β -anomeric hydroxyl group. These criteria allow straightforward assignment of the C-1' resonance of glucobioses (see the TABLE 1). The ¹³C NMR spectral data on glucobioses could be used to distinguish the C-1' resonance of the α and β linked carbon in all cases as shown in the

2047

TABLE 1			
¹³ C-1' Chemica	al shifts	for gluc	obioses
Derivatives		Chemical shifts ^{a)}	
Methyl α -D-glucopyranoside 93.4 ²)			
Kojibiose	(1,2-α)	96	.1
Nigerose	(1,3-α)	93	•4
Maltose	(1,4-α)	92	• 4
Methyl β -D-glucopyranoside		aide 89	•3 ²⁾
Sophorose	(l,2-β)	88	.2
Laminaribiose	(1,3-β)	89	.7
Cellobiose	(1,4-β)	89	•7
a) In ppm upfield from external ¹³ CS ₂ ;			
in H ₂ 0.			

TABLE 1. However, the C-1' signal of kojibiose appeared at a higher field by 3 ppm than the other glucobioses examined.

The ¹³C NMR spectrum of laminaribiose clearly showed the configuration of the linked anomeric carbon (C-1') and two kinds of anomeric carbons (C-1) , and furthermore the verification of ¹³C NMR assignment of laminaribiose was available from the comparison of its spectrum with that of 3-O-methyl-a (or β)-D-glucopyranose,²⁾ as shown in the FIGURE 1.

> Fig. 1. The proton noisedecoupled, natural-abundance ¹³C NMR spectrum of the anomeric mixture of laminaribiose in H₂O at 25 MHz; time-averaging 256 scans.

> <u>Acknowledgement</u>. We are very much indebted to Mr. S. Shimidzu of JEOLCO, Tokyo, for the NMR measurements.

 M. Matsui and M. Okada, <u>Chem. Pharm. Bull. (Tokyo)</u>, <u>18</u>, 2129 (1970);
J. P. Kamerling, D. Rosenberg and J. F. G. Vliegenthart, <u>Biochem. Biophys.</u> <u>Res. Commun.</u>, <u>38</u>, 792 (1970).

D. E. Dorman and J. D. Roberts, <u>J. Amer. Chem. Soc.</u>, <u>92</u>, 1355 (1970);
A. S. Perlin, B. Casu and H. J. Koch, <u>Canad. J. Chem.</u>, <u>48</u>, 2596 (1970).
L. D. Hall and L. F. Johnson, <u>Chem. Commun.</u>, 509 (1969).